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Abstract

Mathematical Model

• We have investigated the Magnetoacoustic solitary wave structures in degenerate dense astrophysical electron-ion

plasmas. For the mentioned problem we have studied the one-soliton and two-soliton solutions.

• It is shown that a slight increase in the density decreases the amplitude of the soliton.

• It is also observed that a change in the magnetic field for a fixed value of density increases the amplitude of the

solitons.

• We have evaluated the exact solution of two solitons of KdV by Hirota bilinear formalism.

• The two solitons interact elastically with each other, so that the individual solitons retain their shape.

• The superposition principle does not hold for the interaction of these non linear waves.

• The solitons of same amplitude will never interact.

Results and Discussion
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One dimensional propagation of fast

magnetoacoustic solitary waves in dense plasmas

with degenerate electrons is investigated in this

paper in the small amplitude limit. In this regard,

Korteweg de-Vries (KdV) equation is derived and

discussed using the plasma parameters that are

typically found in white dwarf stars. The interaction

of fast magnetoacoustic solitons is explored by

using the Hirota bilinear formalism which admits

multi soliton solutions. It is observed that the values

of the propagation vectors determine the interaction

of solitary waves. It is further noted that the

amplitude of the respective solitary waves remain

unchanged after the interaction, however, they do

experience a phase shift.

Magnetoacoustic Waves

Magnetoacoustic waves are amongst the three normal
modes of a magnetized plasma from the
magnetohydrodynamics stand point besides the
acoustic and Alfven waves.
Dispersion relation for magnetoacoustic waves is:

Applications of Magnetoacoustic Waves

The formation of jets such as dynamic fibrils, mottles,

and spicules in the solar chromosphere is a natural

consequence of upwardly propagating slow-mode

magnetoacoustic shocks (ApJ 647: L73-L76, 2006).

It has been shown that large-amplitude MHD shocks

in low-β regions could be a viable mechanism for

coronal heating and wind acceleration in regions of

open magnetic field lines (ApJ, 596:646-655, 2003).

It has been shown that shock heating by slow

magnetosonic waves is expected to be relevant at most

heights in solar coronal plumes, although slow

magnetosonic waves are most likely not a solely

operating energy supply mechanism (ApJ, 549: L143-

L146, 2001).

The magnetosonic waves are believed to be responsible

for particle acceleration in the Earth’s magnetosphere

and plasma heating in the solar atmosphere. They are

also used in the fusion devices for plasma heating.

Numerical Results of 1-SolitonKorteweg de Vries (KdV) Equation

Multi Soliton Solution of KdV equation

Magnetized Electron-ion quantum plasma.

B=(0,0,B0) is Magnetic field.

E=(Ex,Ey,0) is the Electric field.

Propagation lies along x-axis.

Normalized continuity and momentum equations for ion are

The continuity and momentum equations for electron dynamics are

The quantum pressure is considered by using quantum statistics

The normalized momentum equation for electrons, then becomes

The normalized Maxwell's equations
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2 is the ratio of Fermi and magnetic pressures,

To study the magnetoacoustic perturbations propagating in dense plasma, stretch the 

independent variables as
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where ϵ is a small parameter measuring weakness of

nonlinearity and v0 is wave phase velocity normalized to vA.

The perturbed quantities are

expanded as
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where coefficient of 

nonlinearity ond dispersion are

The dispersion relation is then

Algebraic manipulation of higher 

order eqns of ϵ leads to KdV

equation.

Solution of KdV equation is found by following the Hirota Bilinear formalism to

transform a nonlinear differential equations into linear differential equations through a

change of dependent variable

We assume that KdV equation possesses a solution of the form

We use this transformation to form bilinear equation

This bilinear equation can be written in terms of the Hirota-D operators as

Here

To find the multi-soliton solution, perturbation method is used to expand f(ξ,τ) in terms of

power series of ε as

This expansion is substituted in the Hirota bilinear equation and terms with different

orders of ε are collected.

The solution describing a single soliton is

ω is found by substituting expansion of f(ξ,τ) in the ε-order of bilinear form of equation,

which gives ω = -Bk³.

Substitution of f1=Exp[η] gives fj=0 for j=2,3,4,...

Thus the one-soliton solution of KdV equation is

Two soliton solution of this non linear equation are found by choosing

Substituting this solution in ε–order equation gives the dispersion relation ωi = -Bki³.

For ε2–order equation, we take

which give the interaction parameter

Putting f1 and f2 gives all remaining fj=0. This gives the two solitons solution as:

Fig 2: Effect of magnetic field on the solitary wave 

solution of KdV equation. Upper curve is for B₀=10⁶T 

whereas lower curve is for B₀=10⁷T. Other parameters 

are no=10³³m⁻³, T=10⁶K.

Fig 1: Effect of density on the solitary wave solution of 

KdV equation. Upper curve is for no=10³³m⁻³ whereas 

lower curve is for no=5×10³³m⁻³. Other parameters are 

B₀=10⁶T, T=10⁶K.

Interaction of two Solitons

Variation of two soliton solution Bz⁽¹⁾(ξ,τ) versus ξ and 

τ with no=10³³m⁻³, B₀=10⁶T, k₁=9, k₂=5.5, and 

T=10⁶K.

Parametric Plot for the variation of two soliton solution 

Bz⁽¹⁾(ξ,τ) versus ξ and τ.
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Snap shots of interaction of solitons for different times
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